Mining in Space – The Next Frontier?


Given the rising global demand for rare-earth elements (REE) and the necessity to synthesize exotic materials for numerous high-tech applications, extra-terrestrial mining is likely to become the next race in space.

REE are used in state-of-the-art electronics, nuclear technologies, lasers, super-magnets and green-energy technology. China, the world’s largest producer of REE, restricted its abundant supplies globally in 2009, citing the need to protect the environment. In fact, it was the mismanagement of reserves and increasing domestic high-tech production that compelled Beijing to cut REE exports from its Bayan Obo mining district.

In response to Beijing’s move, REE consumers and electronic manufacturers like Japan, the U.S and South Korea accelerated terrestrial exploration of reserves to maintain their industrial supplies.

Enjoying this article? Click here to subscribe for full access. Just $5 a month.

In 2011, Japan succeeded in discovering REE in ocean-bed deposits in its Pacific Exclusive Economic Zone. Apart from exploration, the Japanese trading firm Sumitomo Corporation created a joint venture – Summit Atom Rare Earth Company – with Kazakhstan’s state-run nuclear agency KazAtomProm, to extract REEs from the abundant uranium tailings in Kazakhstan. In 2012, the U.S-based Molycorp Inc. resumed operations in the long-closed Mountain Pass Rare Earth Mine in California to meet domestic demand in the civilian and defence sectors. South Korea has entered into an agreement on REE prospecting with Kyrgyzstan – probably one of the largest such projects in this unexploited mineral-rich nation.

Countries like India, Canada, Tanzania, Australia, Brazil and Vietnam have started prospecting and mining REE within their own jurisdictions; Australia has the largest mine outside China, at Mount Weld.

China, in spite of its large, indigenous REE reserves, is in search of foreign sources for stockpiling. Beijing’s vast experience in REE trade and mining has attracted Greenland. Negotiations are underway, but no formal agreement has been substantiated. Greenland wants to attract foreign investments for exploring its REE and other mineral resources, as part of a move toward greater autonomy from the Kingdom of Denmark. But most of the REE resources in Greenland are associated with uranium deposits, and the Kingdom of Denmark remains the authority on these nuclear resources. It will be difficult for China to penetrate the NATO security cloud and exploit Greenland’s REE resources.

Given the competition for REEs, the mining of abundant REE reserves on the Moon and on Near Earth Asteroids (NEA) is awaiting the development of infrastructure and logistics. Space stations are a central component of such an enterprise, and extra-terrestrial mining on the Moon and NEAs is likely to be realized by the year 2050.

The international Moon Treaty, first put forward by the U.S. government in 1979, intended to transfer jurisdiction of the Moon and other celestial bodies to all the nations of the world. But the major space-faring nations have not yet ratified the treaty. This leaves celestial bodies open for exploration and the growing possibility of prospecting and utilizing space-based mineral and fuel reserves.

In preparation, this year, after a gap of nearly three decades, multiple space stations are orbiting simultaneously in the Low Earth Orbit (LEO). These include the International Space Station (ISS) and Tiangong 1. Six crew members are on the ISS, launched by the Russian Soyuz TMA missions, and three are on the Chinese Shenzhou 10 mission to Tiangong 1.

The ISS – the largest artificial object in orbit – is making prodigious advancements in manned, long-duration presence in the LEO; this is being accomplished with regular replenishment and repair expeditions from Earth. The ISS conducts scientific experiments related to material science, human physiology, meteorology, and astronomy.

Sign up for our weekly newsletter
The Diplomat Brief